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As is well known, the basic part of the theory of algebraic computational complexity had been
shaped by 1966; cf. [1,2,3]. In particular, until very recently the lower bounds on the additive

complexity, C(±), of intensively studied linear and bilinear arithmetic algorithms for arithmetic

computational problems (such as DFT and matrix and polynomial multiplication, MM, PM) have
relied on the active operation-basic substitution argument due to 11,2,3]; cf. also [41. Consequently,
those bounds have not exceeded D, the dimension of the problems that is the total number of

input variables and outputs. In the present paper we consider another algebraic approach that
generalizes the ingenious method of 15]. This enables us to reduce the problem to estimating the

ranks of multidimensional tensors that we associate with the given computational problems. The

successful solution of a similar problem in [6] gives some ground for optimism in the attempts to
establish nonlinear lower bounds on C(±) along this line. We also present another direction to

attack the problem which reduces it to the study of a strong regularity of matrices; see Definition
2 and the Theorem below.

Notation. I, J, K are positive integers. Vh = (K)h, g, " (p),, are the entry h of a vector

V and the entry (j, s) of a matrix 4, respectively. F is a field of constants. X is a vector of
indeterminates, xi, i = 0, 1, ... ,I - 1. L(X, F) is the set of all homogeneous linear forms of

x0, ... , z1 1 with the coefficients from F.

Any K X J matrix, y = -- (X) with the entries from L(X,F) defines a bilinear arithmetic

problem that is the set of bilinear forms {bk(X_2, Y)} whose Y-coefficients form the matrix j(X);

cf. [7,8]. A bilinear arithmetic algorithm, A, that solves such a problem can be represented as a
chain of matrices (pu(O), p(1), ... , I(C)) (cf. [5,7,8]) such that p(O) is the J X J identity matrix, A
is a submatrix of u(C), each s(q) is a J X (J + q) matrix such that

,(q-+ 1) =(p(q) I Y(q + 1)) for q =0, 1,...,C-, (1)

where for allj either

(Y(q + 1))- L=q)(;(q. for some s = s(q) - q + J (2)

or

(Y(q + 1)), =(I.4q)), + 6(A(q)) 8

for some p = p(q) q + J, s(q) < q + J. (3)

In (3), 6 = 1 or 6 = -1. In (9) either L(q) E F or otherwise: L(q) E L(X, F) and ( E(q)), E F
for s = s(q) and for all j. F CA(,]-) designates the number of q such that (3) holds.

Definition I (cf. [9,101). Given P(,_), a homogeneous polynomial in zo, ... , xr-I of degree d, then

r(P( )), the rank of P(X), is the minimum integer r > 0 such that

g=1 h-l
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Let D = D(M(X)) designate the set of all minors of a matrix M(X) with the entries from
L(X, F), r(M) = maxuED r(m). (We say that r(M) is the rank of the bilinear problem associated

with the matrix M(X).) Then the next lemma is easily verified.

Lemma 1. Equa on (2) implies that r(A(q- 1)) = r(A(q)), Equation (3) implies that T(/(q + 1)) _
2r(A4q)).

Corollary. Given a bilinear algorithm, A (cf. (1)-(3)), for the bilinear problem defined by a matrix

A = ju(x), then CA(±) _ log 2 r(A).

Hence, logr(p) fl(nlogn) for the general n X n Toeplitz matrix (J = K = n, /, =

X,-k+,-,, j, k = 0, 1, ... ,n - 1) would imply nonlinear lower bounds on the complexity of PM

and DFT.

Remark. If P,,(X) = PI(X_, ... ,X) is an n-linear form in n vectors of indeterminates,

2_,, ... ,X,, then the polylinear rank, R(P(X)), can be defined as the minimum integer R such

that

Pn(X-= , I L9 j,(2Ch), Lgh(XC) E L(Xh;F).
g-1 A-1

As is obvious, R(P,(_.)) _ r(P,(X)). R(P 2(X,,X 2 )) equals the "usual" rank of the matrix

of coefficients of the bilinear form P2(X,,X 2 ). R(P(X 1 ,X 2 1 X3)) equals the multiplicative

complexity of the three bilinear computational problems associated with P3(X,,X2 ,X 3 ), (cf.

111,121). If I(Z) is an n X n matrix with row-vectors of indeterminates X, I 2 2, ... , IX,, then
log 2 R(per p(X)) _< n (cf. [131). Because of the latter estimate the inequality log12 r(M) > n seems

to be either false or very hard to prove even in the case of a general n X n matrix A.

Despite the latter remark, we hope that the reader will be challenged to look for a better

modification of the above approach and for new methods for establishing lower bounds on C(±).

Here is another example of natural approaches to this problem.

Definition 2. A matrix is strongly regular if it contains no singular submatrix.. Given a J X s
matrix p and a field F then the elementary additive augmentation step consists of adding a new

column-vector to ju which is a linear combination with the coefficients from F of two columns of

p. C±(J), the regularization number of order J is the minimum number of elementary additive

augmentation steps required to transform the J X J identity matrix into a matrix that has a.

strongly regular J X J submatrix.

Theorem. Let Y be the J-dimensional vector of indeterminates, u be a J X J matrix over F

that has a strongly regular s X s submatrix. Then the additive complexity of the evaluation of

puY is at least C*(f).

In particular, the general T6eplits matrices are strongly regular. Hence any nonlinear lower

bound on C-(s) would imply a nonlinear lower bound on C(±) in the cases of PM and DFT.

I wish to thank Evelyn Laurent, LAS, and Phyllis Winkler, Stanford University, for typing this

paper.
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